Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cardiovasc Diabetol ; 22(1): 122, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20243209

ABSTRACT

Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Diabetes Mellitus , Humans , SARS-CoV-2 , Diabetes Mellitus/diagnosis , Diabetes Mellitus/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics
2.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20233360

ABSTRACT

Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.


Subject(s)
Atherosclerosis , COVID-19 , Cardiovascular Diseases , Humans , TATA-Box Binding Protein/genetics , Polymorphism, Single Nucleotide , Cardiovascular Diseases/genetics , Pandemics , COVID-19/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , TATA Box
3.
Arterioscler Thromb Vasc Biol ; 43(5): 628-636, 2023 05.
Article in English | MEDLINE | ID: covidwho-2266992

ABSTRACT

Recent studies have demonstrated a novel function of red blood cells (RBCs) beyond their classical role as gas transporters, that is, RBCs undergo functional alterations in cardiovascular and metabolic disease, and RBC dysfunction is associated with hypertension and the development of cardiovascular injury in type 2 diabetes, heart failure, preeclampsia, familial hypercholesterolemia/dyslipidemia, and COVID-19. The underlying mechanisms include decreased nitric oxide bioavailability, increased arginase activity, and reactive oxygen species formation. Of interest, RBCs contain diverse and abundant micro (mi)RNAs. miRNA expression pattern in RBCs reflects the expression in the whole blood, serum, and plasma. miRNA levels in RBCs have been found to be altered in various cardiovascular and metabolic diseases, which contributes to the development of cardiovascular complications. Evidence has shown that RBC-derived miRNAs interact with the cardiovascular system via extracellular vesicles and argonaute RISC catalytic component 2 as carriers. Alteration of RBC-to-vascular communication via miRNAs may serve as potential disease mechanism for vascular complications. The present review summarizes RBCs and their released miRNAs as potential mediators of cardiovascular injury. We further focus on the possible mechanisms by which RBC-derived miRNAs regulate cardiovascular function. A better understanding of the function of RBC-derived miRNAs will increase insights into the disease mechanism and potential targets for the treatment of cardiovascular complications.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , MicroRNAs , Female , Pregnancy , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus, Type 2/metabolism , COVID-19/metabolism , Erythrocytes/metabolism , Heart , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism
4.
Cardiovasc Res ; 119(8): 1624-1640, 2023 Jul 06.
Article in English | MEDLINE | ID: covidwho-2256197

ABSTRACT

The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.


Subject(s)
COVID-19 , Cardiovascular Diseases , Hemostatics , MicroRNAs , Humans , COVID-19/genetics , Hemostasis/genetics , Gene Expression Regulation , Blood Coagulation/genetics , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , MicroRNAs/genetics
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2243576

ABSTRACT

Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.


Subject(s)
Cardiovascular Diseases , Kidney Diseases , Receptors, sigma , Humans , Cardiomegaly , COVID-19/complications , Heart Failure/complications , Ligands , Receptors, sigma/agonists , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/genetics , Receptors, sigma/metabolism , Signal Transduction/physiology , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Kidney Diseases/complications , Kidney Diseases/genetics , Kidney Diseases/metabolism
6.
Indian Heart J ; 75(2): 91-97, 2023.
Article in English | MEDLINE | ID: covidwho-2235135

ABSTRACT

Cardiovascular diseases, a global health issue, claim the lives of many every year. Lifestyle changes and genetic predisposition are the key drivers for the development of CVDs. In many of the patients, the disease is detected at the end stage making heart transplantation the only treatment option. Hence every attempt should be made to identify the risk at an early stage and initiate preventive measures to improve the quality of their life. Biomarkers are one of the critical factors that aid in the early diagnosis of CVDs. More specific and highly sensitive biomarkers have been discovered lately and have been employed for prognosis and diagnosis of CVDs. The present review briefs about the various categories of cardiovascular biomarkers with emphasis on novel biomarkers and discusses the biomarkers employed for different purposes in CVDs. The biomarkers have also helped in identifying COVID-19 patients with increased risk for developing cardiovascular complications. Being non-invasive makes biomarkers advantageous over other methods for evaluating the pathophysiological status of CVDs.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Humans , Biomarkers , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Prognosis
7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216337

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses significant complications for cardiovascular disease (CVD) patients. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and influence several physiological and pathological processes, including CVD. This critical review aims to expand upon the current literature concerning miRNA deregulation during the SARS-CoV-2 infection, focusing on cardio-specific miRNAs and their association with various CVDs, including cardiac remodeling, arrhythmias, and atherosclerosis after SARS-CoV-2 infection. Despite the scarcity of research in this area, our findings suggest that changes in the expression levels of particular COVID-19-related miRNAs, including miR-146a, miR-27/miR-27a-5p, miR-451, miR-486-5p, miR-21, miR-155, and miR-133a, may be linked to CVDs. While our analysis did not conclusively determine the impact of SARS-CoV-2 infection on the profile and/or expression levels of cardiac-specific miRNAs, we proposed a potential mechanism by which the miRNAs mentioned above may contribute to the development of these two pathologies. Further research on the relationship between SARS-CoV-2, CVDs, and microRNAs will significantly enhance our understanding of this connection and may lead to the use of these miRNAs as biomarkers or therapeutic targets for both pathologies.


Subject(s)
COVID-19 , Cardiovascular Diseases , Circulating MicroRNA , MicroRNAs , Humans , SARS-CoV-2/metabolism , Cardiovascular Diseases/genetics , COVID-19/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
8.
Biomolecules ; 12(10)2022 10 21.
Article in English | MEDLINE | ID: covidwho-2154887

ABSTRACT

Cardiovascular diseases (CVD) represent the leading cause of death in the world despite innovations in therapies and advances in the general management of patients [...].


Subject(s)
Cardiology , Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Biomarkers
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2032986

ABSTRACT

Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.


Subject(s)
COVID-19 , Cardiovascular Diseases , Phosphodiesterase 4 Inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cyclic GMP , Cyclic Nucleotide Phosphodiesterases, Type 4 , Diethylstilbestrol/analogs & derivatives , Humans , Nucleotides, Cyclic , Pharmaceutical Preparations , Phosphoric Diester Hydrolases
10.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-1979269

ABSTRACT

Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet.


Subject(s)
COVID-19 , Cardiovascular Diseases , COVID-19/genetics , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Humans , INDEL Mutation , Lung , Polymorphism, Single Nucleotide
11.
Cardiovasc Res ; 118(13): 2754-2767, 2022 10 21.
Article in English | MEDLINE | ID: covidwho-1961021

ABSTRACT

Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then discuss how technological developments in single-cell 'omics are providing new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Humans , Precision Medicine , Biomarkers , Inflammation , Lipids , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy
12.
Curr Atheroscler Rep ; 24(5): 307-321, 2022 05.
Article in English | MEDLINE | ID: covidwho-1850420

ABSTRACT

PURPOSE OF REVIEW: RNA therapeutics are a new and rapidly expanding class of drugs to prevent or treat a wide spectrum of diseases. We discuss the defining characteristics of the diverse family of molecules under the RNA therapeutics umbrella. RECENT FINDINGS: RNA therapeutics are designed to regulate gene expression in a transient manner. For example, depending upon the strategy employed, RNA therapies offer the versatility to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. RNA therapies include antisense nucleotides, microRNAs and small interfering RNAs, RNA aptamers, and messenger RNAs. Further, we discuss the mechanism(s) by which different RNA therapies either reduce or increase the expression of their targets. We review the RNA therapeutics approved (and those in trials) to treat cardiovascular indications. RNA-based therapeutics are a new, rapidly growing class of drugs that will offer new alternatives for an increasing array of cardiovascular conditions.


Subject(s)
Aptamers, Nucleotide , Cardiovascular Diseases , MicroRNAs , Aptamers, Nucleotide/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
13.
J Med Virol ; 94(8): 3669-3675, 2022 08.
Article in English | MEDLINE | ID: covidwho-1782627

ABSTRACT

The present study aimed to assess the association of 16 polymorphisms in genes encoding prothrombotic and cardiovascular risk factors with COVID-19 disease severity: FV G1691A, FV H1299R, FII G20210A, MTHFR C677T, MTHFR A1298, factor XIII V34L, PAI-1 4G/5G, EPCR haplotypes (A1/A2/A3), eNOS -786 T > C, eNOS G894T, LTA C804A, ACE I/D, ITGB3 PIA1/A2, ITGA2B Baka/b, ß-Fbg -455 G > A and ApoB R3500Q. The study included 30 patients with severe COVID-19 and 49 non-severe COVID-19 patients. All studied polymorphisms except ITGA2B Baka/b were determined using multilocus genotyping assays CVD StripAssays (ViennaLab Diagnostics), while ITGA2B was genotyped using a real-time PCR method based on TaqMan technology. A higher frequency of carriers of at least one ITGB3 PIA2 allele was found in severe COVID-19 patients (p = 0.009). The distribution of genotypes was significantly different for ß-Fbg -455 G > A (p = 0.042), with only three homozygous AA genotypes found among severe COVID-19 patients. The association with an increased risk for severe COVID-19 was found for ITGB3, with carriers of at least one ITGB3 PIA2 allele having a 3.5-fold greater risk of severe COVID-19 (p = 0.011). Genotype distribution differences were obtained for the combinations of FV H1299R and FXIII V34L (p = 0.026), ITGB3 PIA1/A2 and ITGA2B Baka/b (p = 0.024), and ACE I/D and PAI-1 4G/5G (p = 0.046). ITGB3 polymorphism emerged as an independent risk factor for severe COVID-19 and homozygosity for ß-Fbg -455 G > A mutation could contribute to disease severity. The combined effect of polymorphisms in genes encoding prothrombotic and cardiovascular risk factors could further contribute to disease severity.


Subject(s)
COVID-19 , Cardiovascular Diseases , COVID-19/complications , COVID-19/genetics , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Heart Disease Risk Factors , Humans , Pilot Projects , Plasminogen Activator Inhibitor 1/genetics , Risk Factors , Severity of Illness Index
14.
J Cardiovasc Pharmacol ; 79(4): 431-443, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1778958

ABSTRACT

ABSTRACT: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.


Subject(s)
COVID-19 Drug Treatment , Cardiovascular Diseases , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Epigenesis, Genetic , Humans , SARS-CoV-2
15.
Ann N Y Acad Sci ; 1507(1): 70-83, 2022 01.
Article in English | MEDLINE | ID: covidwho-1673249

ABSTRACT

For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.


Subject(s)
Aging/genetics , Aging/metabolism , Congresses as Topic/trends , Geroscience/trends , Longevity/physiology , Research Report , Autophagy/physiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/mortality , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Geroscience/methods , Humans , Metabolomics/methods , Metabolomics/trends , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/therapy , Stem Cell Transplantation/methods , Stem Cell Transplantation/trends
16.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: covidwho-1512137

ABSTRACT

Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.


Subject(s)
Cardiovascular Diseases/therapy , Genomics , Pluripotent Stem Cells/transplantation , Artificial Intelligence , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular System/cytology , Cardiovascular System/growth & development , Cell Differentiation , Drug Discovery , Gene Editing , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Precision Medicine , Regenerative Medicine , Safety , Translational Research, Biomedical
17.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1512386

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is characterized by important respiratory impairments frequently associated with severe cardiovascular damages. Moreover, patients with pre-existing comorbidity for cardiovascular diseases (CVD) often present a dramatic increase in inflammatory cytokines release, which increases the severity and adverse outcomes of the infection and, finally, mortality risk. Despite this evident association at the clinical level, the mechanisms linking CVD and COVID-19 are still blurry and unresolved. Noncoding RNAs (ncRNAs) are functional RNA molecules transcribed from DNA but usually not translated into proteins. They play an important role in the regulation of gene expression, either in relatively stable conditions or as a response to different stimuli, including viral infection, and are therefore considered a possible important target in the design of specific drugs. In this review, we introduce known associations and interactions between COVID-19 and CVD, discussing the role of ncRNAs within SARS-CoV-2 infection from the perspective of the development of efficient pharmacological tools to treat COVID-19 patients and taking into account the equally dramatic associated consequences, such as those affecting the cardiovascular system.


Subject(s)
COVID-19/genetics , Cardiovascular Diseases/genetics , RNA, Untranslated/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cardiovascular Diseases/pathology , Humans , RNA Interference , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
18.
PLoS One ; 16(9): e0256988, 2021.
Article in English | MEDLINE | ID: covidwho-1394552

ABSTRACT

Epidemiological studies suggest that individuals with comorbid conditions including diabetes, chronic lung, inflammatory and vascular disease, are at higher risk of adverse COVID-19 outcomes. Genome-wide association studies have identified several loci associated with increased susceptibility and severity for COVID-19. However, it is not clear whether these associations are genetically determined or not. We used a Phenome-Wide Association (PheWAS) approach to investigate the role of genetically determined COVID-19 susceptibility on disease related outcomes. PheWAS analyses were performed in order to identify traits and diseases related to COVID-19 susceptibility and severity, evaluated through a predictive COVID-19 risk score. We utilised phenotypic data in up to 400,000 individuals from the UK Biobank, including Hospital Episode Statistics and General Practice data. We identified a spectrum of associations between both genetically determined COVID-19 susceptibility and severity with a number of traits. COVID-19 risk was associated with increased risk for phlebitis and thrombophlebitis (OR = 1.11, p = 5.36e-08). We also identified significant signals between COVID-19 susceptibility with blood clots in the leg (OR = 1.1, p = 1.66e-16) and with increased risk for blood clots in the lung (OR = 1.12, p = 1.45 e-10). Our study identifies significant association of genetically determined COVID-19 with increased blood clot events in leg and lungs. The reported associations between both COVID-19 susceptibility and severity and other diseases adds to the identification and stratification of individuals at increased risk, adverse outcomes and long-term effects.


Subject(s)
COVID-19/genetics , Obesity/genetics , Thrombophlebitis/genetics , Thrombosis/genetics , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Female , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Obesity/epidemiology , Obesity/virology , Phenomics , Phenotype , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/pathogenicity , Thrombophlebitis/epidemiology , Thrombophlebitis/virology , Thrombosis/epidemiology , Thrombosis/virology
19.
Int J Mol Sci ; 22(13)2021 Jul 04.
Article in English | MEDLINE | ID: covidwho-1304672

ABSTRACT

Cardiovascular diseases have attracted our full attention not only because they are the main cause of mortality and morbidity in many countries but also because the therapy for and cure of these maladies are among the major challenges of the medicine in the 21st century [...].


Subject(s)
Cardiovascular Diseases/etiology , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Complement C3/genetics , Complement C3/metabolism , Extracellular Vesicles/metabolism , Genetic Markers , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Cardiovascular , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL